Swiftpack.co - leif-ibsen/SwiftECC as Swift Package

Swiftpack.co is a collection of thousands of indexed Swift packages. Search packages.
See all packages published by leif-ibsen.
leif-ibsen/SwiftECC 3.4.0
Swift Elliptic Curve Cryptography (ECIES, ECDSA and ECDH)
⭐️ 20
🕓 2 weeks ago
.package(url: "https://github.com/leif-ibsen/SwiftECC.git", from: "3.4.0")

SwiftECC

Contents:

SwiftECC provides elliptic curve cryptography in Swift. This encompasses:
  • Encryption and decryption using the ECIES algorithm based on the AES block cipher or the ChaCha20/Poly1305 cipher/message authentication
  • Signature signing and verifying using the ECDSA algorithm, including the option of deterministic signatures
  • Secret key agreement using the Diffie-Hellman key agreement algorithm - ECDH
  • Ability to create your own domains
  • General elliptic curve arithmetic
SwiftECC requires Swift 5.0. It also requires that the Int and UInt types be 64 bit types.

Usage

In your project Package.swift file add a dependency like
  dependencies: [
  .package(url: "https://github.com/leif-ibsen/SwiftECC", from: "3.4.0"),
  ]

Basics

The basic concept in SwiftECC is the Elliptic Curve Domain, represented by the Domain class. Please, refer section 3.1 in [SEC 1] that describes the domain concept in detail.

There are 18 predefined NIST domains and 14 predefined Brainpool domains in SwiftECC, and it is possible to create your own characteristic 2, and odd prime characteristic domains.

You need a public key in order to encrypt a message or verify a signature, and you need a private key in order to decrypt a message or sign a message. Given a domain, you can generate public/private key pairs or you can load them from the PEM- or DER encoding of existing keys.

Creating New Keys

For a given domain it is possible to generate a public/private key pair. For example:
let domain = Domain.instance(curve: .EC384r1)
let (pubKey, privKey) = domain.generateKeyPair()

The private key is simply a random positive integer less than the domain order. The public key is the domain generator point multiplied by the private key. Given a private key, say 'privKey', you can generate the corresponding public key, like

let pubKey = ECPublicKey(privateKey: privKey)

Given a domain, say 'dom' and a curve point, say 'pt', you can generate a public key, like

let pubKey = try ECPublicKey(domain: dom, w: pt)

Loading Existing Keys

It is possible to create keys from their PEM encodings. For example
// Public key encoding - EC384r1 domain
let pubKeyPem =
"""
-----BEGIN PUBLIC KEY-----
MHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEQW/MahMwMTFjwY95uOEdfBVC7HrQhTGG
TwxiPlgDiARqC6y6EQ1Ajkuhe4A02WOltRYQRXKytzspOR25UfgtagURAwxVFYzR
9cmi6FRmvvq/Tsigd/dAi4FNjniR7/Pg
-----END PUBLIC KEY-----
"""
let pubKey = try ECPublicKey(pem: pubKeyPem)

// Private key encoding in PKCS#8 format - EC384r1 domain
let privKeyPem =
"""
-----BEGIN PRIVATE KEY-----
MIG/AgEAMBAGByqGSM49AgEGBSuBBAAiBIGnMIGkAgEBBDBmpNziSYmGoWwl7apJ
M9ZdDBxkJqmxMScHGXG45ZQXSv7fIuJlsSwxK76nUiiO7gigBwYFK4EEACKhZANi
AARBb8xqEzAxMWPBj3m44R18FULsetCFMYZPDGI+WAOIBGoLrLoRDUCOS6F7gDTZ
Y6W1FhBFcrK3Oyk5HblR+C1qBREDDFUVjNH1yaLoVGa++r9OyKB390CLgU2OeJHv
8+A=
-----END PRIVATE KEY-----
"""
let privKey = try ECPrivateKey(pem: privKeyPem)

// See the key ASN1 structures
print(pubKey)
print(privKey)

giving:

Sequence (2):
  Sequence (2):
    Object Identifier: 1.2.840.10045.2.1
    Object Identifier: 1.3.132.0.34
  Bit String (776): 00000100 01000001 01101111 11001100 01101010 00010011 00110000 00110001 00110001 01100011 11000001 10001111 01111001 10111000 11100001 00011101 01111100 00010101 01000010 11101100 01111010 11010000 10000101 00110001 10000110 01001111 00001100 01100010 00111110 01011000 00000011 10001000 00000100 01101010 00001011 10101100 10111010 00010001 00001101 01000000 10001110 01001011 10100001 01111011 10000000 00110100 11011001 01100011 10100101 10110101 00010110 00010000 01000101 01110010 10110010 10110111 00111011 00101001 00111001 00011101 10111001 01010001 11111000 00101101 01101010 00000101 00010001 00000011 00001100 01010101 00010101 10001100 11010001 11110101 11001001 10100010 11101000 01010100 01100110 10111110 11111010 10111111 01001110 11001000 10100000 01110111 11110111 01000000 10001011 10000001 01001101 10001110 01111000 10010001 11101111 11110011 11100000

Sequence (4):
  Integer: 1
  Octet String (48): 66 a4 dc e2 49 89 86 a1 6c 25 ed aa 49 33 d6 5d 0c 1c 64 26 a9 b1 31 27 07 19 71 b8 e5 94 17 4a fe df 22 e2 65 b1 2c 31 2b be a7 52 28 8e ee 08
  [0]:
    Object Identifier: 1.3.132.0.34
  [1]:
    Bit String (776): 00000100 01000001 01101111 11001100 01101010 00010011 00110000 00110001 00110001 01100011 11000001 10001111 01111001 10111000 11100001 00011101 01111100 00010101 01000010 11101100 01111010 11010000 10000101 00110001 10000110 01001111 00001100 01100010 00111110 01011000 00000011 10001000 00000100 01101010 00001011 10101100 10111010 00010001 00001101 01000000 10001110 01001011 10100001 01111011 10000000 00110100 11011001 01100011 10100101 10110101 00010110 00010000 01000101 01110010 10110010 10110111 00111011 00101001 00111001 00011101 10111001 01010001 11111000 00101101 01101010 00000101 00010001 00000011 00001100 01010101 00010101 10001100 11010001 11110101 11001001 10100010 11101000 01010100 01100110 10111110 11111010 10111111 01001110 11001000 10100000 01110111 11110111 01000000 10001011 10000001 01001101 10001110 01111000 10010001 11101111 11110011 11100000

Encrypted Private Keys

Private keys can be encrypted as described in [PKCS#5] using the PBES2 scheme. For example:
let pw = Bytes("MySecret".utf8)
let domain = Domain.instance(curve: .EC384r1)
let (_, priv) = domain.makeKeyPair()
let encryptedKey = priv.pemEncrypted(password: pw, cipher: .AES256)
print(encryptedKey)

giving (for example):

-----BEGIN ENCRYPTED PRIVATE KEY-----
MIIBHjBJBgkqhkiG9w0BBQ0wPDAbBgkqhkiG9w0BBQwwDgQI3id2VFlFxXUCAggA
MB0GCWCGSAFlAwQBKgQQlJJQtcZ23p1Q4fXmvpS6hgSB0DBuxL/sCUc/c9NDhrHK
/R2sbtS7rs5a9zUFwcMNV1nVUCK1SSbaCg8/BxHPfqKlAw4RcnsQtN+YD7hz5pxF
YDcYk4mEZo7ODFkRxhKF7vLsUsRZAl2XYGIJflp03+fAWdsiNisjo/4Y/5xxWvCe
OBzfjRpsDT4HjRgcxTtxrzvInzrJkQwyDBAkPMudIshkPOQ1LEoXhi0gVFl9jGN+
eSLv5Wba2chf/kQcw7R4B3iiE5787wE2fWvvh4ek3oSYcLCvO/gkwgUhyA2hk3rn
01k=
-----END ENCRYPTED PRIVATE KEY-----

The implied encryption parameters are cipher block mode = CBC, iteration count = 2048 and salt = 8 random bytes. The password is simply a byte array, any possible interpretation of it as a string is unspecified. The encrypted private key is compatible with, and is readable by OpenSSL.

Private keys can be created from their PEM encodings in encrypted form. In the example the encrypted private key was created by OpenSSL using the AES-256 cipher in CBC mode with password 'abcd'.

let encryptedPem =
"""
-----BEGIN ENCRYPTED PRIVATE KEY-----
MIHeMEkGCSqGSIb3DQEFDTA8MBsGCSqGSIb3DQEFDDAOBAg7pgGVDlE/xgICCAAw
HQYJYIZIAWUDBAEqBBCFF4KWxWqhOB5Q8dOwdcPkBIGQbuj2TvlhtpMZ3ZhLBBBx
kJfY1l09yNcJNEcvS8RX4/STXZkt5gMBgtY2DvGAKI0wkpbim+kXSjM6/hmNxY5b
jhQapm8l8jbVGkETtYfseZXpvIT5lnBy9KtO8o3OmlRTV3xXu3KeDZakDoimfQ8G
N7SldmFRcz171yMoIQ17ZU95uneZoogsRuMVMVUJXEh7
-----END ENCRYPTED PRIVATE KEY-----
"""
let privKey = try ECPrivateKey(pem: encryptedPem, password: Bytes("abcd".utf8))
print(privKey)

giving:

Sequence (4):
  Integer: 1
  Octet String (32): 1e 4d c5 de 0f 47 66 6b 7e 4c b8 ee e5 0f f9 6c 4a d3 4f 6f 2e 07 f7 fc e7 c8 24 dd 17 18 fd fa
  [0]:
    Object Identifier: 1.2.840.10045.3.1.7
  [1]:
    Bit String (520): 00000100 00101110 10100100 10110110 10001111 11111010 00111111 00000111 01011010 01011101 01110000 01100001 10110000 10101110 01011010 10011100 10001111 00110100 11010000 11111101 10010110 11001110 00101011 10001111 11000001 10101001 11000000 00001101 00011101 11011101 11001011 10101110 10011000 11001011 10000101 01110001 10100010 11100000 01100011 01101010 11110100 11011101 00011000 01011101 10010110 01010101 10110011 00101101 01010000 10100010 00110001 10000100 11011001 00111001 00011000 01100100 10001110 11011111 10011100 00010100 10110101 11011010 00111010 10101100 11111100

SwiftECC can read encrypted private key files provided they were encrypted with one of the ciphers AES-128, AES-192 or AES-256 in CBC mode.

ChaChaPoly Encryption and Decryption

Encryption and decryption is done using the ECIES algorithm based on the ChaCha20 cipher. Message authentication - possibly including additional authenticated data - uses Poly1305 message authentication.
The encryption and decryption speed for domain EC256k1 (the bitcoin domain) measured on an iMac 2021, Apple M1 chip is about 250 Megabytes per second.

Example

let plainText = "Hi, there!"
let aaData = "This is the additional authenticated data"

let (pub, priv) = Domain.instance(curve: .EC256k1).makeKeyPair()
let cipherText = pub.encryptChaCha(msg: Bytes(plainText.utf8), aad: Bytes(aaData.utf8))

do {
    let text = try priv.decryptChaCha(msg: cipherText, aad: Bytes(aaData.utf8))
    print(String(bytes: text, encoding: .utf8)!)
} catch {
    print("Exception: \(error)")
}

giving:

Hi, there!

AES Encryption and Decryption

Encryption and decryption is done using the ECIES algorithm based on the AES block cipher using one of AES-128, AES-192 or AES-256 ciphers, depending on your choice.
The following cipher block modes are supported:
  • GCM - Galois Counter mode. This is the default mode
  • ECB - Electronic Codebook mode with PKCS#7 padding
  • CBC - Cipher Block Chaining mode with PKCS#7 padding
  • CFB - Cipher Feedback mode
  • CTR - Counter mode
  • OFB - Output Feedback mode
The encryption and decryption speed for domain EC256k1 (the bitcoin domain) measured on an iMac 2021, Apple M1 chip using AES-128 are shown below - units are Megabytes per second.
Block ModeEncryptDecrypt
GCM53 MByte/Sec53 MByte/Sec
ECB30 MByte/Sec30 MByte/Sec
CBC24 MByte/Sec25 MByte/Sec
CFB23 MByte/Sec23 MByte/Sec
CTR30 MByte/Sec30 MByte/Sec
OFB29 MByte/Sec29 MByte/Sec

BlueECC Compatibility

Data encrypted by SwiftECC in the EC256r1 domain with AES128/GCM, in the EC384r1 domain with AES256/GCM and in the EC521r1 domain with AES256/GCM can be decrypted with IBM's BlueECC product using curve prime256v1, secp384r1, and secp521r1, respectively. Likewise, data encrypted by BlueECC with curve prime256v1, secp384r1 and secp521, can be decrypted by SwiftECC using EC256r1 with AES128/GCM, EC384r1 with AES256/GCM and EC521r1 with AES256/GCM, respectively.

Example

import SwiftECC

// You need a public key to encrypt a message and the corresponding private key to decrypt it,
// for example from the EC163k1 domain

let pemPublic163k1 =
"""
-----BEGIN PUBLIC KEY-----
MEAwEAYHKoZIzj0CAQYFK4EEAAEDLAAEA6txn7CCae0d9AiGj3Rk5m9XflTCB81oe1fKZi4F4oip
SF2u79k8TD5J
-----END PUBLIC KEY-----
"""

let pemPrivate163k1 =
"""
-----BEGIN EC PRIVATE KEY-----
MFICAQEEFNfflqz2oOd9WpxuMZ9wJTFO1sjgoAcGBSuBBAABoS4DLAAEA6txn7CCae0d9AiGj3Rk
5m9XflTCB81oe1fKZi4F4oipSF2u79k8TD5J
-----END EC PRIVATE KEY-----
"""

let text = "The quick brown fox jumps over the lazy dog!"

do {
  let pubKey = try ECPublicKey(pem: pemPublic163k1)
  let privKey = try ECPrivateKey(pem: pemPrivate163k1)
  let encryptedData = pubKey.encrypt(msg: text.data(using: .utf8)!, cipher: .AES128)
  let decryptedData = try privKey.decrypt(msg: encryptedData, cipher: .AES128)
  print(String(data: decryptedData, encoding: .utf8)!)
} catch {
  print("\(error)")
}

giving

The quick brown fox jumps over the lazy dog!

Signing and Verifying

Signing data and verifying signatures is performed using the ECDSA algorithm. It is possible to generate deterministic signatures as specificed in [RFC-6979] by setting the deterministic parameter to true in the sign operation.

The message digest used in the process is determined from the domain field size as follows:

  • field size <= 224: SHA2-224
  • 224 < field size <= 256: SHA2-256
  • 256 < field size <= 384: SHA2-384
  • 384 < field size: SHA2-512

BlueECC Compatibility

Signatures created by SwiftECC in the EC256r1, EC384r1 and EC521r1 domains can be verified by IBM's BlueECC product using curve prime256v1, secp384r1 and secp521r1, respectively. Likewise, signatures created by BlueECC with one of the curves prime256v1, secp384r1 and secp521r1 can be verified by SwiftECC using domains EC256r1, EC384r1 and EC521r1, respectively.

CryptoKit Compatibility

Signatures created by SwiftECC in the EC256r1, EC384r1 and EC521r1 domains can be verified by Swift CryptoKit using curve P256, P384 and P521, respectively. Likewise, signatures created by Swift CryptoKit with one of the curves P256, P384 and P521 can be verified by SwiftECC using domains EC256r1, EC384r1 and EC521r1, respectively.

Example

import SwiftECC

// Get a predefined domain - for example brainpool BP160r1

let domain = Domain.instance(curve: .BP160r1)

// Create your own keys

let (pubKey, privKey) = domain.makeKeyPair()

// See how they look

print(pubKey.asn1)
print(privKey.asn1)

// Store them in PEM format for future use

let pubPEM = pubKey.pem
let privPEM = privKey.pem

let message = "The quick brown fox jumps over the lazy dog!".data(using: .utf8)!

let sig = privKey.sign(msg: message)
let ok = pubKey.verify(signature: sig, msg: message)
print("Signature is", ok ? "good" : "wrong")

giving (for example):

Sequence (2):
	Sequence (2):
		Object Identifier: 1.2.840.10045.2.1
		Object Identifier: 1.3.36.3.3.2.8.1.1.1
	Bit String (328): 00000100 00000011 00000111 00110011 01010100 00000001 10111100 01101111 10100001 01001000 11101000 01111100 10001111 00000110 00010010 11100111 11111010 10010001 00100100 01001000 11000110 01110001 00110100 01001000 10011110 01011110 11000000 10010001 01000110 01011010 01001110 01110000 00011011 01010111 10101011 01101010 00011011 01101100 01100100 01000100 01111101

Sequence (4):
	Integer: 1
	Octet String (20): 32 96 e0 c4 d7 f5 cb 03 0c 95 63 b1 a2 c1 2f 64 4c dc d6 4c
	[0]:
		Object Identifier: 1.3.36.3.3.2.8.1.1.1
	[1]:
		Bit String (328): 00000100 00000011 00000111 00110011 01010100 00000001 10111100 01101111 10100001 01001000 11101000 01111100 10001111 00000110 00010010 11100111 11111010 10010001 00100100 01001000 11000110 01110001 00110100 01001000 10011110 01011110 11000000 10010001 01000110 01011010 01001110 01110000 00011011 01010111 10101011 01101010 00011011 01101100 01100100 01000100 01111101

Signature is good

Secret Key Agreement

Given your own private key and another party's public key, you can generate a byte array that can be used as a symmetric encryption key. The other party can generate the same byte array by using his own private key and your public key.

Example

import SwiftECC

do {
	let domain = Domain.instance(curve: .EC256r1)

	// Party A's keys
	let (pubA, privA) = domain.makeKeyPair()

	// Party B's keys
	let (pubB, privB) = domain.makeKeyPair()

	let info: Bytes = [1, 2, 3]
	let secretA = try privA.keyAgreement(pubKey: pubB, length: 16, md: .SHA2_256, sharedInfo: info)
	let secretB = try privB.keyAgreement(pubKey: pubA, length: 16, md: .SHA2_256, sharedInfo: info)
	print(secretA)
	print(secretB)
} catch {
	print("Exception: \(error)")
}

giving (for example):

[92, 161, 137, 44, 47, 30, 6, 26, 43, 183, 199, 130, 19, 254, 232, 106]
[92, 161, 137, 44, 47, 30, 6, 26, 43, 183, 199, 130, 19, 254, 232, 106]

For the key agreement to work, the two parties must agree on which domain to use, which message digest to use and which shared information (possibly none) to use.

CryptoKit Compatibility

SwiftECC key agreement is compatible with Swift CryptoKit key agreement in that the EC256r1, EC384r1 and EC521r1 domains correspond to CryptoKit's P256, P384 and P521 curves, and the SHA2_256, SHA2_384 and SHA2_512 message digests correspond to CryptoKit's SHA256, SHA384 and SHA512 message digests.

To convert a CryptoKit public key - e.g. 'pubKey' - to the corresponding SwiftECC public key:

let eccKey = try ECPublickey(pem: pubKey.pemRepresentation)

To convert a SwiftECC public key - e.g. 'pubKey' - to the corresponding CryptoKit public key:

let ckKey = try P256.KeyAgreement.PublicKey(pemRepresentation: pubKey.pem)

Creating New Domains

You can create your own domains as illustrated by the two examples below.

Example

This is example 3.5 from [GUIDE]. It shows how to make your own prime characteristic domain.

import SwiftECC
import BigInt

// Create the domain
let domain = try Domain.instance(name: "EC29", p: BInt(29), a: BInt(4), b: BInt(20), gx: BInt(1), gy: BInt(5), order: BInt(37), cofactor: 1)

let p1 = Point(BInt(5), BInt(22))
let p2 = Point(BInt(16), BInt(27))

print("p1 + p2 =", try domain.addPoints(p1, p2))
print("p1 * 2  =", try domain.multiplyPoint(p1, BInt(2)))

// Inspect the domain - please refer [SEC 1] appendix C.2
print(domain.asn1Explicit())

giving

p1 + p2 = Point(13, 6)
p1 * 2  = Point(14, 6)
Sequence (6):
  Integer: 1
  Sequence (2):
    Object Identifier: 1.2.840.10045.1.1
    Integer: 29
  Sequence (2):
    Octet String (1): 04
    Octet String (1): 14
  Octet String (3): 04 01 05
  Integer: 37
  Integer: 1

Example

This is example 3.6 from [GUIDE]. It shows how to make your own characteristic 2 domain.

import SwiftECC
import BigInt

// Reduction polynomial for x^4 + x^1 + 1    
let rp = RP(4, 1)
// Create the domain
let domain = try Domain.instance(name: "EC4", rp: rp, a: BInt(8), b: BInt(9), gx: BInt(1), gy: BInt(1), order: BInt(22), cofactor: 2)

let p1 = Point(BInt(2), BInt(15))
let p2 = Point(BInt(12), BInt(12))

print("p1 + p2 =", try domain.addPoints(p1, p2))
print("p1 * 2  =", try domain.multiplyPoint(p1, BInt(2)))

// Inspect the domain - please refer [SEC 1] appendix C.2
print(domain.asn1Explicit())

giving

p1 + p2 = Point(1, 1)
p1 * 2  = Point(11, 2)
Sequence (6):
  Integer: 1
  Sequence (2):
    Object Identifier: 1.2.840.10045.1.2
    Sequence (2):
      Integer: 4
      Integer: 1
  Sequence (2):
    Octet String (1): 08
    Octet String (1): 09
  Octet String (3): 04 01 01
  Integer: 22
  Integer: 2

Elliptic Curve Arithmetic

SwiftECC implements the common elliptic curve arithmetic operations:
  • Point multiplication
  • Point addition
  • Point doubling
  • Point subtraction
  • Point negation
  • Is Point on curve?
It is also possible to encode curve points in either compressed- or uncompressed format, as well as to do the reverse decoding.

Key Derivation

SwiftECC uses the X9.63 Key Derivation Function to derive block cipher keying materiel. Please refer [SEC 1] section 3.6. Seven cases are considered:

ChaCha20/Poly1305

KDF generates 44 bytes.

Encryption/decryption key = bytes 0 ..< 32
Nonce = bytes 32 ..< 44

AES-128/GCM block mode

KDF generates 32 bytes.

AES encryption/decryption key = bytes 0 ..< 16
Initialization vector = bytes 16 ..< 32

AES-192/GCM block mode

KDF generates 40 bytes.

AES encryption/decryption key = bytes 0 ..< 24
Initialization vector = bytes 24 ..< 40

AES-256/GCM block mode

KDF generates 48 bytes.

AES encryption/decryption key = bytes 0 ..< 32
Initialization vector = bytes 32 ..< 48

AES-128/Non-GCM block mode

KDF generates 48 bytes.

AES encryption/decryption key = bytes 0 ..< 16
HMAC key = bytes 16 ..< 48

AES-192/Non-GCM block mode

KDF generates 56 bytes.

AES encryption/decryption key = bytes 0 ..< 24
HMAC key = bytes 24 ..< 56

AES-256/Non-GCM block mode

KDF generates 64 bytes.

AES encryption/decryption key = bytes 0 ..< 32
HMAC key = bytes 32 ..< 64

The AES key and HMAC key can be retrieved with the ECPrivateKey method 'getKeyAndMac'.

For block modes CBC, CFB, CTR, and OFB the initialization vector (IV) is 16 zero bytes.

Performance

To assess the performance of SwiftECC, the signature generation and verification time and the keypair generation time was measured on an iMac 2021, Apple M1 chip. The results are shown in the table below - units are milliseconds. The columns mean:
  • Sign: The time it takes to sign a short message
  • Verify: The time it takes to verify a signature for a short message
  • Keypair Generation: The time it takes to generate a public/private keypair
CurveSignVerifyKeypair Generation
brainpoolP160r10.7 mSec1.3 mSec2.9 mSec
brainpoolP160t10.7 mSec1.4 mSec2.9 mSec
brainpoolP192r10.96 mSec1.8 mSec3.9 mSec
brainpoolP192t10.96 mSec1.9 mSec3.9 mSec
brainpoolP224r11.3 mSec2.6 mSec5.7 mSec
brainpoolP224t11.3 mSec2.6 mSec5.7 mSec
brainpoolP256r11.7 mSec3.3 mSec7.4 mSec
brainpoolP256t11.7 mSec3.3 mSec7.4 mSec
brainpoolP320r12.9 mSec5.7 mSec13 mSec
brainpoolP320t12.9 mSec5.5 mSec13 mSec
brainpoolP384r14.5 mSec8.6 mSec21 mSec
brainpoolP384t14.4 mSec8.7 mSec21 mSec
brainpoolP512r19.2 mSec19 mSec44 mSec
brainpoolP512t19.3 mSec18 mSec44 mSec
secp192k10.96 mSec1.8 mSec4.0 mSec
secp192r10.96 mSec1.9 mSec3.9 mSec
secp224k11.3 mSec2.6 mSec5.8 mSec
secp224r11.3 mSec2.6 mSec5.7 mSec
secp256k11.7 mSec3.2 mSec7.4 mSec
secp256r11.7 mSec3.3 mSec7.5 mSec
secp384r14.5 mSec8.9 mSec21 mSec
secp521r19.8 mSec19 mSec47 mSec
sect163k11.2 mSec2.2 mSec5.1 mSec
sect163r21.2 mSec2.3 mSec5.1 mSec
sect233k12.3 mSec4.5 mSec11 mSec
sect233r12.3 mSec4.5 mSec11 mSec
sect283k13.5 mSec7.0 mSec17 mSec
sect283r13.5 mSec7.1 mSec17 mSec
sect409k18.0 mSec16 mSec41 mSec
sect409r18.0 mSec16 mSec42 mSec
sect571k117 mSec35 mSec92 mSec
sect571r117 mSec34 mSec92 mSec

Dependencies

The SwiftECC package depends on the ASN1 and BigInt packages

dependencies: [
    .package(url: "https://github.com/leif-ibsen/ASN1", from: "2.0.1"),
    .package(url: "https://github.com/leif-ibsen/BigInt", from: "1.2.12"),
],

References

Algorithms from the following books and papers have been used in the implementation. There are references in the source code where appropriate.

  • [FILIPPO] - Filippo Valsorda: A GO IMPLEMENTATION OF POLY1305 THAT MAKES SENSE, April 2019
  • [FIPS 180-4] - FIPS PUB 180-4 - Secure Hash Standard (SHS), August 2015
  • [GCM] - The Galois/Counter Mode of Operation (GCM)
  • [GUIDE] - Hankerson, Menezes, Vanstone: Guide to Elliptic Curve Cryptography. Springer 2004
  • [KNUTH] - Donald E. Knuth: Seminumerical Algorithms. Addison-Wesley 1971
  • [NIST] - NIST Special Publication 800-38D, November 2007
  • [PKCS#5] - Password-Based Cryptography Specification - Version 2.0, September 2000
  • [RFC-6979] - Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA), August 2013
  • [RFC-8439] - ChaCha20 and Poly1305 for IETF Protocols, June 2018
  • [SAVACS] - E. Savacs, C.K. Koc: The Montgomery Modular Inverse - Revisited, July 2000
  • [SEC 1] - Standards for Efficient Cryptography 1 (SEC 1), Certicom Corp. 2009
  • [SEC 2] - Standards for Efficient Cryptography 2 (SEC 2), Certicom Corp. 2010
  • [WARREN] - Henry S. Warren, Jr.: Montgomery Multiplication, July 2012
  • [X9.62] - X9.62 - Public Key Cryptography For The Financial Services Industry, 1998

Acknowledgement

The AES block cipher implementation is essentially a translation to Swift of the Go Language implementation of AES.
The Poly1305 implementation is based on the description in [FILIPPO].

GitHub

link
Stars: 20
Last commit: 2 weeks ago
jonrohan Something's broken? Yell at me @ptrpavlik. Praise and feedback (and money) is also welcome.

Related Packages

Release Notes

2 weeks ago

In release 3.4.0 the ECPrivateKey class has a new method 'getKeyAndMac' that - given an encrypted message - returns the AES blockcipher key and the HMAC key that were originally used in the encryption of the message.

Swiftpack is being maintained by Petr Pavlik | @ptrpavlik | @swiftpackco | API | Analytics