Swiftpack.co - koher/swift-image as Swift Package

Swiftpack.co is a collection of thousands of indexed Swift packages. Search packages.
See all packages published by koher.
koher/swift-image 0.7.1
SwiftImage: an image library in Swift with Swifty APIs and value semantics
⭐️ 515
🕓 2 years ago
.package(url: "https://github.com/koher/swift-image.git", from: "0.7.1")

SwiftImage

Build Status

SwiftImage is an image library written in Swift, which provides Swifty APIs and image types with value semantics.

var image = Image<RGBA<UInt8>>(named: "ImageName")!

let pixel: RGBA<UInt8> = image[x, y]
image[x, y] = RGBA(red: 255, green: 0, blue: 0, alpha: 127)
image[x, y] = RGBA(0xFF00007F) // red: 255, green: 0, blue: 0, alpha: 127

// Iterates over all pixels
for pixel in image {
    // ...
}

// Image processing (e.g. binarizations)
let binarized: Image<Bool> = image.map { $0.gray >= 127 }

// From/to `UIImage`
image = Image<RGBA<UInt8>>(uiImage: imageView.image!)
imageView.image = image.uiImage

Introduction

SwiftImage makes it easy to access pixels of images. The Image type in SwiftImage can be used intuitively like 2D Array.

var image: Image<UInt8> = Image(width: 640, height: 480, pixels: [255, 248, /* ... */])

let pixel: UInt8 = image[x, y]
image[x, y] = 255

let width: Int = image.width // 640
let height: Int = image.height // 480

We can also access pixels of images using CoreGraphics. However, CoreGraphics requires us to struggle with complicated formats, old C APIs and painful memory management. SwiftImage provides clear and Swifty APIs for images.

Typically Image is used with the RGBA type. RGBA is a simple struct declared as follows.

struct RGBA<Channel> {
    var red: Channel
    var green: Channel
    var blue: Channel
    var alpha: Channel
}

Because RGBA is a generic type, it can represent various formats of pixels. For example, RGBA<UInt8> represents a pixel of 8-bit RGBA image (each channel has a value in 0...255). Similarly, RGBA<UInt16> represents a pixel of 16-bit RGBA image (0...65535). RGBA<Float> can represent a pixel whose channels are Floats, which is often used for machine learning. A pixel of binary images, which have only black or white pixels and are used for fax, can be represented using RGBA<Bool>.

When RGBA is used with Image, type parameters are nested like Image<RGBA<UInt8>> because both Image and RGBA are generic types. On the other hand, grayscale images can be represented without nested parameters: Image<UInt8> for 8-bit grayscale images and Image<UInt16> for 16-bit grayscale images.

Image and RGBA provide powerful APIs to handle images. For example, it is possible to convert a RGBA image to grayscale combining Image.map with RGBA.gray in one line.

let image: Image<RGBA<UInt8>> = // ...
let grayscale: Image<UInt8> = image.map { $0.gray }

Another notable feature of SwiftImage is that Image is a struct with value semantics, which is achieved using copy-on-write. Therefore,

  • Image instances never be shared
  • defensive copying is unnecessary
  • there are no wasteful copying of Image instances
  • copying is executed lazily only when it is inevitable
var another: Image<UInt8> = image // Not copied here because of copy-on-write
another[x, y] = 255               // Copied here lazily
another[x, y] == image[x, y]      // false: Instances are never shared

Usage

Import

import SwiftImage

Initialization

let image = Image<RGBA<UInt8>>(named: "ImageName")!
let image = Image<RGBA<UInt8>>(contentsOfFile: "path/to/file")!
let image = Image<RGBA<UInt8>>(data: Data(/* ... */))!
let image = Image<RGBA<UInt8>>(uiImage: imageView.image!) // from a UIImage
let image = Image<RGBA<UInt8>>(nsImage: imageView.image!) // from a NSImage
let image = Image<RGBA<UInt8>>(cgImage: cgImage) // from a CGImage
let image = Image<RGBA<UInt8>>(width: 640, height: 480, pixels: pixels) // from a pixel array
let image = Image<RGBA<UInt8>>(width: 640, height: 480, pixel: .black) // a black RGBA image
let image = Image<UInt8>(width: 640, height: 480, pixel: 0) // a black grayscale image
let image = Image<Bool>(width: 640, height: 480, pixel: false) // a black binary image

Access to a pixel

// Gets a pixel by subscripts
let pixel = image[x, y]
// Sets a pixel by subscripts
image[x, y] = RGBA(0xFF0000FF)
image[x, y].alpha = 127
// Safe get for a pixel
if let pixel = image.pixelAt(x: x, y: y) {
    print(pixel.red)
    print(pixel.green)
    print(pixel.blue)
    print(pixel.alpha)
    
    print(pixel.gray) // (red + green + blue) / 3
    print(pixel) // formatted like "#FF0000FF"
} else {
    // `pixel` is safe: `nil` is returned when out of bounds
    print("Out of bounds")
}

Iteration

for pixel in image {
    ...
}

Rotation

let result = image.rotated(by: .pi) // Rotated clockwise by π
let result = image.rotated(byDegrees: 180) // Rotated clockwise by 180 degrees
// Rotated clockwise by π / 4 and fill the background with red
let result = image.rotated(by: .pi / 4, extrapolatedBy: .filling(.red))

Flip

let result = image.xReversed() // Flip Horizontally
let result = image.yReversed() // Flip Vertically

Resizing

let result = image.resizedTo(width: 320, height: 240)
let result = image.resizedTo(width: 320, height: 240,
    interpolatedBy: .nearestNeighbor) // Nearest neighbor

Crop

Slicing is executed with no copying costs.

let slice: ImageSlice<RGBA<UInt8>> = image[32..<64, 32..<64] // No copying costs
let cropped = Image<RGBA<UInt8>>(slice) // Copying is executed here

Conversion

Image can be converted by map in the same way as Array. Followings are the examples.

Grayscale

let result: Image<UInt8> = image.map { (pixel: RGBA<UInt8>) -> UInt8 in
    pixel.gray
}
// Shortened form
let result = image.map { $0.gray }

Binarization

let result: Image<Bool> = image.map { (pixel: RGBA<UInt8>) -> Bool in
    pixel.gray >= 128
}
// Shortened form
let result = image.map { $0.gray >= 128 }

Binarization (auto threshold)

let threshold = UInt8(image.reduce(0) { $0 + $1.grayInt } / image.count)
let result = image.map { $0.gray >= threshold }

Mean filter

let kernel = Image<Float>(width: 3, height: 3, pixel: 1.0 / 9.0)
let result = image.convoluted(kernel)

Gaussian filter

let kernel = Image<Int>(width: 5, height: 5, pixels: [
    1,  4,  6,  4, 1,
    4, 16, 24, 16, 4,
    6, 24, 36, 24, 6,
    4, 16, 24, 16, 4,
    1,  4,  6,  4, 1,
]).map { Float($0) / 256.0 }
let result = image.convoluted(kernel)

With UIImage

// From `UIImage`
let image = Image<RGBA<UInt8>>(uiImage: imageView.image!)

// To `UIImage`
imageView.image = image.uiImage

With NSImage

// From `NSImage`
let image = Image<RGBA<UInt8>>(nsImage: imageView.image!)

// To `NSImage`
imageView.image = image.nsImage

With CoreGraphics

// Drawing on images with CoreGraphics
var image = Image<PremultipliedRGBA<UInt8>>(uiImage: imageView.image!)
image.withCGContext { context in
    context.setLineWidth(1)
    context.setStrokeColor(UIColor.red.cgColor)
    context.move(to: CGPoint(x: -1, y: -1))
    context.addLine(to: CGPoint(x: 640, y: 480))
    context.strokePath()
}
imageView.image = image.uiImage

Requirements

  • Swift 5.0 or later
  • Xcode 10.2 or later

Installation

Swift Package Manager

.package(url: "https://github.com/koher/swift-image.git", from: "0.7.0"),

Carthage

github "koher/swift-image" ~> 0.7.0

Manually

  1. Put SwiftImage.xcodeproj into your project/workspace in Xcode.
  2. Click your project icon and select the application target and the "General" tab.
  3. Add SwiftImage.framework to "Embedded Binaries".

License

The MIT License

GitHub

link
Stars: 515
Last commit: 2 years ago
Advertisement: IndiePitcher.com - Cold Email Software for Startups

Release Notes

Support Swift 5.2
3 years ago
  • Support Swift 5.2
  • Fix unsafe pointer operations which caused bugs in Swift 5.2

Swiftpack is being maintained by Petr Pavlik | @ptrpavlik | @swiftpackco | API | Analytics