Swiftpack.co - Package - jjjkkkjjj/Matft

Matft

SwiftPM compatible CocoaPods compatible Carthage compatible license

Matft is Numpy-like library in Swift. Function name and usage is similar to Numpy.

Note: You can use Protocol version(beta version) too.

Feature & Usage

  • Many types

  • Pretty print

  • Indexing

    • Positive
    • Negative
    • Boolean
    • Fancy
  • Slicing

    • Start / To / By
    • New Axis
  • View

    • Assignment
  • Conversion

    • Broadcast
    • Transpose
    • Reshape
    • Astype
  • Univarsal function reduction

  • Mathematic

    • Arithmetic
    • Statistic
    • Linear Algebra

...etc.

See Function List for all functions.

Declaration

MfArray

  • The MfArray such like a numpy.ndarray

    let a = MfArray([[[ -8,  -7,  -6,  -5],
                      [ -4,  -3,  -2,  -1]],
            
                     [[ 0,  1,  2,  3],
                      [ 4,  5,  6,  7]]])
    let aa = Matft.arange(start: -8, to: 8, by: 1, shape: [2,2,4])
    print(a)
    print(aa)
    /*
    mfarray = 
    [[[	-8,		-7,		-6,		-5],
    [	-4,		-3,		-2,		-1]],
    
    [[	0,		1,		2,		3],
    [	4,		5,		6,		7]]], type=Int, shape=[2, 2, 4]
    mfarray = 
    [[[	-8,		-7,		-6,		-5],
    [	-4,		-3,		-2,		-1]],
    
    [[	0,		1,		2,		3],
    [	4,		5,		6,		7]]], type=Int, shape=[2, 2, 4]
    */
    

MfType

  • You can pass MfType as MfArray's argument mftype: .Hoge. It is similar to dtype.

    ※Note that stored data type will be Float or Double only even if you set MfType.Int. So, if you input big number to MfArray, it may be cause to overflow or strange results in any calculation (+, -, *, /,... etc.). But I believe this is not problem in practical use.

  • MfType's list is below

      public enum MfType: Int{
        case None // Unsupportted
        case Bool
        case UInt8
        case UInt16
        case UInt32
        case UInt64
        case UInt
        case Int8
        case Int16
        case Int32
        case Int64
        case Int
        case Float
        case Double
        case Object // Unsupported
    }
    
  • Also, you can convert MfType easily using astype

    let a = MfArray([[[ -8,  -7,  -6,  -5],
                      [ -4,  -3,  -2,  -1]],
            
                     [[ 0,  1,  2,  3],
                      [ 4,  5,  6,  7]]])
    print(a)//See above. if mftype is not passed, MfArray infer MfType. In this example, it's MfType.Int
    
    let a = MfArray([[[ -8,  -7,  -6,  -5],
                      [ -4,  -3,  -2,  -1]],
                
                     [[ 0,  1,  2,  3],
                      [ 4,  5,  6,  7]]], mftype: .Float)
    print(a)
    /*
    mfarray = 
    [[[	-8.0,		-7.0,		-6.0,		-5.0],
    [	-4.0,		-3.0,		-2.0,		-1.0]],
    
    [[	0.0,		1.0,		2.0,		3.0],
    [	4.0,		5.0,		6.0,		7.0]]], type=Float, shape=[2, 2, 4]
    */
    let aa = MfArray([[[ -8,  -7,  -6,  -5],
                      [ -4,  -3,  -2,  -1]],
                
                     [[ 0,  1,  2,  3],
                      [ 4,  5,  6,  7]]], mftype: .UInt)
    print(aa)
    /*
    mfarray = 
    [[[	4294967288,		4294967289,		4294967290,		4294967291],
    [	4294967292,		4294967293,		4294967294,		4294967295]],
    
    [[	0,		1,		2,		3],
    [	4,		5,		6,		7]]], type=UInt, shape=[2, 2, 4]
    */
    //Above output is same as numpy!
    /*
    >>> np.arange(-8, 8, dtype=np.uint32).reshape(2,2,4)
    array([[[4294967288, 4294967289, 4294967290, 4294967291],
            [4294967292, 4294967293, 4294967294, 4294967295]],
    
           [[         0,          1,          2,          3],
            [         4,          5,          6,          7]]], dtype=uint32)
    */
    
    print(aa.astype(.Float))
    /*
    mfarray = 
    [[[	-8.0,		-7.0,		-6.0,		-5.0],
    [	-4.0,		-3.0,		-2.0,		-1.0]],
    
    [[	0.0,		1.0,		2.0,		3.0],
    [	4.0,		5.0,		6.0,		7.0]]], type=Float, shape=[2, 2, 4]
    */
    

Subscription

MfSlice

  • You can access specific data using subscript.

You can set MfSlice (see below's list) to subscript.

  • MfSlice(start: Int? = nil, to: Int? = nil, by: Int = 1)
    
  • Matft.newaxis
    
  • ~< //this is prefix, postfix and infix operator. same as python's slice, ":"
    

(Positive) Indexing

  • Normal indexing

    let a = Matft.arange(start: 0, to: 27, by: 1, shape: [3,3,3])
    print(a)
    /*
    mfarray = 
    [[[	0,		1,		2],
    [	3,		4,		5],
    [	6,		7,		8]],
    
    [[	9,		10,		11],
    [	12,		13,		14],
    [	15,		16,		17]],
    
    [[	18,		19,		20],
    [	21,		22,		23],
    [	24,		25,		26]]], type=Int, shape=[3, 3, 3]
    */
    print(a[2,1,0])
    // 21
    

    Slicing

  • If you replace : with ~<, you can get sliced mfarray. Note that use a[0~<] instead of a[:] to get all elements along axis.

    print(a[~<1])  //same as a[:1] for numpy
    /*
    mfarray = 
    [[[	9,		10,		11],
    [	12,		13,		14],
    [	15,		16,		17]]], type=Int, shape=[1, 3, 3]
    */
    print(a[1~<3]) //same as a[1:3] for numpy
    /*
    mfarray = 
    [[[	9,		10,		11],
    [	12,		13,		14],
    [	15,		16,		17]],
    
    [[	18,		19,		20],
    [	21,		22,		23],
    [	24,		25,		26]]], type=Int, shape=[2, 3, 3]
    */
    print(a[~<~<2]) //same as a[::2] for numpy
    //print(a[~<<2]) //alias
    /*
    mfarray = 
    [[[	0,		1,		2],
    [	3,		4,		5],
    [	6,		7,		8]],
    
    [[	18,		19,		20],
    [	21,		22,		23],
    [	24,		25,		26]]], type=Int, shape=[2, 3, 3]
    */
    

Negative Indexing

  • Negative indexing is also available That's implementation was hardest for me...

    print(a[~<-1])
    /*
    mfarray = 
    [[[	0,		1,		2],
    [	3,		4,		5],
    [	6,		7,		8]],
    
    [[	9,		10,		11],
    [	12,		13,		14],
    [	15,		16,		17]]], type=Int, shape=[2, 3, 3]
    */
    print(a[-1~<-3])
    /*
    mfarray = 
    	[], type=Int, shape=[0, 3, 3]
    */
    print(a[~<~<-1])
    //print(a[~<<-1]) //alias
    /*
    mfarray = 
    [[[	18,		19,		20],
    [	21,		22,		23],
    [	24,		25,		26]],
    
    [[	9,		10,		11],
    [	12,		13,		14],
    [	15,		16,		17]],
    
    [[	0,		1,		2],
    [	3,		4,		5],
    [	6,		7,		8]]], type=Int, shape=[3, 3, 3]*/
    

Boolean Indexing

  • You can use boolean indexing.

    Caution! I don't check performance, so this boolean indexing may be slow

    Unfortunately, Matft is too slower than numpy...

    (numpy is 1ms, Matft is 7ms...)

    let img = MfArray([[1, 2, 3],
                                   [4, 5, 6],
                                   [7, 8, 9]], mftype: .UInt8)
    img[img > 3] = MfArray([10], mftype: .UInt8)
    print(img)
    /*
    mfarray = 
    [[	1,		2,		3],
    [	10,		10,		10],
    [	10,		10,		10]], type=UInt8, shape=[3, 3]
    */
    

Fancy Indexing

  • You can use fancy indexing!!!

    let a = MfArray([[1, 2], [3, 4], [5, 6]])
                
    a[MfArray([0, 1, 2]), MfArray([0, -1, 0])] = MfArray([999,888,777])
    print(a)
    /*
    mfarray = 
    [[	999,		2],
    [	3,		888],
    [	777,		6]], type=Int, shape=[3, 2]
    */
                
    a.T[MfArray([0, 1, -1]), MfArray([0, 1, 0])] = MfArray([-999,-888,-777])
    print(a)
    /*
    mfarray = 
    [[	-999,		-777],
    [	3,		-888],
    [	777,		6]], type=Int, shape=[3, 2]
    */
    

View

  • Note that returned subscripted mfarray will have base property (is similar to view in Numpy). See numpy doc in detail.

    let a = Matft.arange(start: 0, to: 4*4*2, by: 1, shape: [4,4,2])
                
    let b = a[0~<, 1]
    b[~<<-1] = MfArray([9999]) // cannot pass Int directly such like 9999
    
    print(a)
    /*
    mfarray = 
    [[[	0,		1],
    [	9999,		9999],
    [	4,		5],
    [	6,		7]],
    
    [[	8,		9],
    [	9999,		9999],
    [	12,		13],
    [	14,		15]],
    
    [[	16,		17],
    [	9999,		9999],
    [	20,		21],
    [	22,		23]],
    
    [[	24,		25],
    [	9999,		9999],
    [	28,		29],
    [	30,		31]]], type=Int, shape=[4, 4, 2]
    */
    

Function List

Below is Matft's function list. As I mentioned above, almost functions are similar to Numpy. Also, these function use Accelerate framework inside, the perfomance may keep high.

* means method function exists too. Shortly, you can use a.shallowcopy() where a is MfArray.

^ means method function only. Shortly, you can use a.tolist() not Matft.tolist where a is MfArray.

  • Creation

| Matft | Numpy | | -------------------------- | ---------------- | | *Matft.shallowcopy | *numpy.copy | | *Matft.deepcopy | copy.deepcopy | | Matft.nums | numpy.ones * N | | Matft.nums_like | numpy.ones_like * N | | Matft.arange | numpy.arange | | Matft.eye | numpy.eye | | Matft.diag | numpy.diag | | Matft.vstack | numpy.vstack | | Matft.hstack | numpy.hstack | | Matft.concatenate | numpy.concatenate |

  • Conversion

| Matft | Numpy | | --------------------------- | ----------------------- | | *Matft.astype | *numpy.astype | | *Matft.transpose | *numpy.transpose | | *Matft.expand_dims | *numpy.expand_dims | | *Matft.squeeze | *numpy.squeeze | | *Matft.broadcast_to | *numpy.broadcast_to | | *Matft.conv_order | *numpy.ascontiguousarray | | *Matft.flatten | *numpy.flatten | | *Matft.flip | *numpy.flip | | *Matft.clip | *numpy.clip | | *Matft.swapaxes | *numpy.swapaxes | | *Matft.moveaxis | *numpy.moveaxis | | *Matft.sort | *numpy.sort | | *Matft.argsort | *numpy.argsort | | ^MfArray.toArray | ^numpy.ndarray.tolist |

  • File

    save function has not developed yet.

| Matft | Numpy | | ----------------------------- | :--------------- | | Matft.file.loadtxt | numpy.loadtxt | | Matft.file.genfromtxt | numpy.genfromtxt |

  • Operation

    Line 2 is infix (prefix) operator.

| Matft | Numpy | | ------------------------------ | ------------------------- | | Matft.add
+ | numpy.add
+ | | Matft.sub
- | numpy.sub
- | | Matft.div
/ | numpy.div
. | | Matft.mul
* | numpy.multiply
* | | Matft.inner
+ | numpy.inner
n/a | | Matft.cross
^ | numpy.cross
n/a | |Matft.matmul
*&   |numpy.matmul
@ | | Matft.equal
=== | numpy.equal
== | | Matft.not_equal
!== | numpy.not_equal
!= | | Matft.less
< | numpy.less
< | | Matft.less_equal
<= | numpy.less_equal
<= | | Matft.greater
> | numpy.greater
> | | Matft.greater_equal
>= | numpy.greater_equal
>= | | Matft.allEqual
== | numpy.array_equal
n/a | | Matft.neg
- | numpy.negative
- |

  • Universal Fucntion Reduction

| Matft | Numpy | | ------------------------------------------------------------ | ------------------------------------------------------- | | *Matft.ufuncReduce
e.g.) Matft.ufuncReduce(a, Matft.add) | numpy.add.reduce
e.g.) numpy.add.reduce(a) | | *Matft.ufuncAccumulate
e.g.) Matft.ufuncAccumulate(a, Matft.add) | numpy.add.accumulate
e.g.) numpy.add.accumulate(a) |

  • Math function

| Matft | Numpy | | ------------------------ | ---------- | | Matft.math.sin | numpy.sin | | Matft.math.asin | numpy.asin | | Matft.math.sinh | numpy.sinh | | Matft.math.asinh | numpy.asinh | | Matft.math.sin | numpy.cos | | Matft.math.acos | numpy.acos | | Matft.math.cosh | numpy.cosh | | Matft.math.acosh | numpy.acosh | | Matft.math.tan | numpy.tan | | Matft.math.atan | numpy.atan | | Matft.math.tanh | numpy.tanh | | Matft.math.atanh | numpy.atanh | | Matft.math.sqrt | numpy.sqrt | | Matft.math.rsqrt | numpy.rsqrt | | Matft.math.exp | numpy.exp | | Matft.math.log | numpy.log | | Matft.math.log2 | numpy.log2 | | Matft.math.log10 | numpy.log10 | | *Matft.math.ceil | numpy.ceil | | *Matft.math.floor | numpy.floor | | *Matft.math.trunc | numpy.trunc | | *Matft.math.nearest | numpy.nearest | | *Matft.math.round | numpy.round | | Matft.math.abs | numpy.abs | | Matft.math.reciprocal | numpy.reciprocal | | Matft.math.power | numpy.power | | Matft.math.square | numpy.square | | Matft.math.sign | numpy.sign |

  • Statistics function

| Matft | Numpy | | --------------------------- | ------------ | | *Matft.stats.mean | *numpy.mean | | *Matft.stats.max | *numpy.max | | *Matft.stats.argmax | *numpy.argmax | | *Matft.stats.min | *numpy.min | | *Matft.stats.argmin | *numpy.argmin | | *Matft.stats.sum | *numpy.sum | | Matft.stats.maximum | numpy.maximum | | Matft.stats.minimum | numpy.minimum | | *Matft.stats.sumsqrt | n/a | | *Matft.stats.squaresum | n/a | | *Matft.stats.cumsum | *numpy.cumsum |

  • Linear algebra

| Matft | Numpy | | -------------------------------- | ----------------- | | Matft.linalg.solve | numpy.linalg.solve | | Matft.linalg.inv | numpy.linalg.inv | | Matft.linalg.det | numpy.linalg.det | | Matft.linalg.eigen | numpy.linalg.eig | | Matft.linalg.svd | numpy.linalg.svd | | Matft.linalg.pinv | numpy.linalg.pinv | | Matft.linalg.polar_left | scipy.linalg.polar | | Matft.linalg.polar_right | scipy.linalg.polar | | Matft.linalg.normlp_vec | scipy.linalg.norm | | Matft.linalg.normfro_mat | scipy.linalg.norm | | Matft.linalg.normnuc_mat | scipy.linalg.norm |

Performance

I use Accelerate, so all of MfArray operation may keep high performance.

func testPefAdd1() {
        do{
            let a = Matft.arange(start: 0, to: 10*10*10*10*10*10, by: 1, shape: [10,10,10,10,10,10])
            let b = Matft.arange(start: 0, to: -10*10*10*10*10*10, by: -1, shape: [10,10,10,10,10,10])
            
            self.measure {
                let _ = a+b
            }
            /*
             '-[MatftTests.ArithmeticPefTests testPefAdd1]' measured [Time, seconds] average: 0.001, relative standard deviation: 23.418%, values: [0.001707, 0.001141, 0.000999, 0.000969, 0.001029, 0.000979, 0.001031, 0.000986, 0.000963, 0.001631]
            1.14ms
             */
        }
    }
    
    func testPefAdd2(){
        do{
            let a = Matft.arange(start: 0, to: 10*10*10*10*10*10, by: 1, shape: [10,10,10,10,10,10])
            let b = a.transpose(axes: [0,3,4,2,1,5])
            let c = a.T
            
            self.measure {
                let _ = b+c
            }
            /*
             '-[MatftTests.ArithmeticPefTests testPefAdd2]' measured [Time, seconds] average: 0.004, relative standard deviation: 5.842%, values: [0.004680, 0.003993, 0.004159, 0.004564, 0.003955, 0.004200, 0.003998, 0.004317, 0.003919, 0.004248]
            4.20ms
             */
        }
    }

    func testPefAdd3(){
        do{
            let a = Matft.arange(start: 0, to: 10*10*10*10*10*10, by: 1, shape: [10,10,10,10,10,10])
            let b = a.transpose(axes: [1,2,3,4,5,0])
            let c = a.T
            
            self.measure {
                let _ = b+c
            }
            /*
             '-[MatftTests.ArithmeticPefTests testPefAdd3]' measured [Time, seconds] average: 0.004, relative standard deviation: 16.815%, values: [0.004906, 0.003785, 0.003702, 0.005981, 0.004261, 0.003665, 0.004083, 0.003654, 0.003836, 0.003874]
            4.17ms
             */
        }

Matft achieved almost same performance as Numpy!!!

※Swift's performance test was conducted in release mode

My codes have several overhead and redundant part so this performance could be better than now.

import numpy as np
#import timeit

a = np.arange(10**6).reshape((10,10,10,10,10,10))
b = np.arange(0, -10**6, -1).reshape((10,10,10,10,10,10))

#timeit.timeit("b+c", repeat=10, globals=globals())
%timeit -n 10 a+b
"""
962 µs ± 273 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
"""

a = np.arange(10**6).reshape((10,10,10,10,10,10))
b = a.transpose((0,3,4,2,1,5))
c = a.T
#timeit.timeit("b+c", repeat=10, globals=globals())
%timeit -n 10 b+c
"""
5.68 ms ± 1.45 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
"""

a = np.arange(10**6).reshape((10,10,10,10,10,10))
b = a.transpose((1,2,3,4,5,0))
c = a.T
#timeit.timeit("b+c", repeat=10, globals=globals())
%timeit -n 10 b+c
"""
3.92 ms ± 897 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
"""

Installation

SwiftPM

  • Import
    • Project > Build Setting > + Build Setting
    • Select Rules select
  • Update
    • File >Swift Packages >Update to Latest Package versions update

Carthage

  • Set Cartfile

    echo 'github "jjjkkkjjj/Matft"' > Cartfile
     carthage update ###or append '--platform ios'
    
  • Import Matft.framework made by above process to your project

CocoaPods

  • Create Podfile (Skip if you have already done)

    pod init
    
  • Write pod 'Matft' in Podfile such like below

    target 'your project' do
      pod 'Matft'
    end
    
  • Install Matft

    pod install
    

Github

link
Stars: 6

Dependencies

Used By

Total: 0