Package -

SELF

Overview

Provides the SELF criteria to learn causal structure.

Details of the algorithm can be found in "SELF: A Structural Equation Embedded Likelihood Framework for Causal Discovery" (AAAI2018).

Installation

install.packages("SELF")

Quick Start

This package contain the data synthetic process and the casual structure learning algorithm. Here are some examples to make a quick start:

#x->y->z
set.seed(0)
x=rnorm(4000)
y=x^2+runif(4000,-1,1)*0.1
z=y^2+runif(4000,-1,1)*0.1
data=data.frame(x,y,z)
fhc(data,gamma=10,booster = "gbtree")

#x->y->z linear data
set.seed(0)
x=rnorm(4000)
y=3*x+runif(4000,-1,1)*0.1
z=3*y+runif(4000,-1,1)*0.1
data=data.frame(x,y,z)
fhc(data,booster = "lm")

#RandomGraph linear data
set.seed(0)
G=randomGraph(dim=10,indegree=1.5)
data=synthetic_data_linear(G=G,sample_num=4000)
fitG=fhc(data,booster = "lm")
indicators(fitG,G)

Github

link
Stars:

Advertisement