Swiftpack.co - amzn/smoke-dynamodb as Swift Package

Swiftpack.co is a collection of thousands of indexed Swift packages. Search packages.
amzn/smoke-dynamodb
SmokeDynamoDB is a library to make it easy to use DynamoDB from Swift-based applications, with a particular focus on usage with polymorphic database tables (tables that do not have a single schema for all rows).
.package(url: "https://github.com/amzn/smoke-dynamodb.git", from: "3.0.0-beta.2")

Build - Master Branch Swift 5.2, 5.3 and 5.4 Tested Ubuntu 18.04 and 20.04 Tested CentOS 8 Tested Amazon Linux 2 Tested Join the Smoke Server Side community on gitter Apache 2

SmokeDynamoDB is a library to make it easy to use DynamoDB from Swift-based applications, with a particular focus on usage with polymorphic database tables (tables that don't have a single schema for all rows.

Getting Started

Step 1: Add the SmokeDynamoDB dependency

SmokeDynamoDB uses the Swift Package Manager. To use the framework, add the following dependency to your Package.swift-

For swift-tools version 5.2 and greater-

dependencies: [
    .package(url: "https://github.com/amzn/smoke-dynamodb", from: "3.0.0-alpha.5")
]

.target(name: ..., dependencies: [
    ..., 
    .product(name: "SmokeDynamoDB", package: "smoke-dynamodb"),
]),

For swift-tools version 5.1 and prior-

dependencies: [
    .package(url: "https://github.com/amzn/smoke-dynamodb", from: "3.0.0-alpha.5")
]

.target(
    name: ...,
    dependencies: [..., "SmokeDynamoDB"]),

Basic Usage

Naming Schema

For consistency in naming across the library, SmokeDynamoDB will case DynamoDB to what is observed and standardized in AWS's documentation of DynamoDB:

  • Uppercase: DynamoDB

    • Use-cases: Class names, struct names, upper-cased while in the middle of a camel cased function/variable name, and strings referring to it as a proper noun.
    • Examples:
      • DynamoDBCompositePrimaryKeyTable
      • dropAsDynamoDBKeyPrefix
  • Lowercase: dynamodb

    • Use-cases: When used as a prefix to a function/variable name that is lower-cased or camel-cased.
    • Example:
      • dynamodbKeyWithPrefixedVersion

Performing operations on a DynamoDB Table

This package enables operations to be performed on a DynamoDB table using a type that conforms to the DynamoDBCompositePrimaryKeyTable protocol. In a production scenario, operations can be performed using AWSDynamoDBCompositePrimaryKeyTable.

Typically for request-based applications such as microservices, a AWSDynamoDBCompositePrimaryKeyTableGenerator is created per application at application start-

let generator = AWSDynamoDBCompositePrimaryKeyTableGenerator(
    credentialsProvider: credentialsProvider, region: region,
    endpointHostName: dynamodbEndpointHostName, tableName: dynamodbTableName)

And a AWSDynamoDBCompositePrimaryKeyTable is created from this generator for each request-

let table = generator.with(logger: logger)

SmokeDynamoDB uses SwiftNIO for its networking and by default a new SwiftNIO EventLoopGroup will be created for a table to perform that networking. Optionally, you can provide an existing EventLoopGroup when you create the generator-

let generator = AWSDynamoDBCompositePrimaryKeyTableGenerator(
    credentialsProvider: credentialsProvider, region: region,
    endpointHostName: dynamodbEndpointHostName, tableName: dynamodbTableName,
    eventLoopProvider: .shared(existingEventLoopGroup)

Typically this existing EventLoopGroup will correspond to the group used by the rest of an application. For each particular table instance created from a generator, you can force affinity to a particular EventLoop within the provided EventLoopGroup by passing it when the table instance is being created-

let table = generator.with(logger: logger,
                           eventLoop: eventLoop)

This is useful for applications that also use SwiftNIO as a server and want to maintain handle downstream service calls on the same EventLoop as the incoming request to the server.

SmokeFramework (https://github.com/amzn/smoke-framework) based applications can automatically achieve this request-based EventLoop affinity by passing the reporting context into the AWSDynamoDBCompositePrimaryKeyTableGenerator.with(reporting:) function when creating the table-

public func getInvocationContext(invocationReporting: SmokeServerInvocationReporting<SmokeInvocationTraceContext>) -> MyContext {
    let awsClientInvocationReporting = invocationReporting.withInvocationTraceContext(traceContext: awsClientInvocationTraceContext)
    let dynamodbTable = self.dynamodbTableGenerator.with(reporting: awsClientInvocationReporting)
    
    return MyContext(dynamodbTable: dynamodbTable)
}

Testing

In Memory mocking

The InMemory* types - such as InMemoryDynamoDBCompositePrimaryKeyTable - provide the ability to perform basic validation of table operations by using an in-memory dictionary to simulate the behaviour of a DynamoDb table. More advanced behaviours such as indexes are not simulated with these types.

The SimulateConcurrency* types provide a wrapper around another table and simulates additional writes to that table in-between accesses. These types are designed to allow unit testing of table concurrency handling.

DynamoDB Local

With the downloadable version of Amazon DynamoDB, you can develop and test applications without accessing the DynamoDB web service. This version can be used when the full functionality of DynamoDB is needed for local testing.

The instructions to set up DynamoDB Local is here.

You can then call DynamoDB Local using the following code.

import SmokeDynamoDB
import SmokeAWSCore
import SmokeAWSHttp
import Logging
        
let credentials = StaticCredentials(accessKeyId: "accessKeyId",
                                    secretAccessKey: "secretAccessKey",
                                    sessionToken: nil)
        
let generator = AWSDynamoDBCompositePrimaryKeyTableGenerator(
    credentialsProvider: credentials,
    region: .us_west_2,
    endpointHostName: "127.0.0.1",
    endpointPort: 8000,
    tableName: "MyTableName")
defer {
    try? generator.close()
}
   
let table = generator.with(logger: Logger(label: "test.logger"))

...

DynamoDB Local requires credentials to be sent but these credentials do not need to correspond to anything previously setup.

Insertion

An item can be inserted into the DynamoDB table using the following-

struct PayloadType: Codable, Equatable {
    let firstly: String
    let secondly: String
}

let key = StandardCompositePrimaryKey(partitionKey: "partitionId",
                                      sortKey: "sortId")
let payload = PayloadType(firstly: "firstly", secondly: "secondly")
let databaseItem = StandardTypedDatabaseItem.newItem(withKey: key, andValue: payload)
        
try table.insertItem(databaseItem).wait()

The insertItem operation will attempt to create the following row in the DynamoDB table-

  • PK: "partitionId" (table partition key)
  • SK: "sortId" (table sort key)
  • CreateDate:
  • RowType: "PayloadType"
  • RowVersion: 1
  • LastUpdatedDate:
  • firstly: "firstly"
  • secondly: "secondly"

By default, this operation will fail if an item with the same partition key and sort key already exists.

Note: The StandardCompositePrimaryKey will place the partition key in the attribute called PK and the sort key in an attribute called SK. Custom partition and sort key attribute names can be used by dropping down to the underlying CompositePrimaryKey type and the PrimaryKeyAttributes protocol.

Retrieval

An item can be retrieved from the DynamoDB table using the following-

let retrievedItem: StandardTypedDatabaseItem<PayloadType>? = try table.getItem(forKey: key).wait()

The getItem operation return an optional TypedDatabaseItem which will be nil if the item doesn't exist in the table. These operations will also fail if the RowType recorded in the database row doesn't match the type being requested.

Update

An item can be updated in the DynamoDB table using the following-

let updatedPayload = PayloadType(firstly: "firstlyX2", secondly: "secondlyX2")
let updatedDatabaseItem = retrievedItem.createUpdatedItem(withValue: updatedPayload)
try table.updateItem(newItem: updatedDatabaseItem, existingItem: retrievedItem).wait()

The updateItem (or updateItem) operation will attempt to insert the following row in the DynamoDB table-

  • PK: "partitionId" (table partition key)
  • SK: "sortId" (table sort key)
  • CreateDate:
  • RowType: "PayloadType"
  • RowVersion: 2
  • LastUpdatedDate:
  • firstly: "firstlyX2"
  • secondly: "secondlyX2"

By default, this operation will fail if an item with the same partition key and sort key doesn't exist in the table and if the existing row doesn't have the same version number as the existingItem submitted in the operation. The DynamoDBCompositePrimaryKeyTable protocol also provides the clobberItem operation which will overwrite a row in the database regardless of the existing row.

Conditionally Update

The conditionallyUpdateItem operation will attempt to update the primary item, repeatedly calling the primaryItemProvider to retrieve an updated version of the current row until the update operation succeeds. The primaryItemProvider can throw an exception to indicate that the current row is unable to be updated.

try table.conditionallyUpdateItem(forKey: key, updatedPayloadProvider: updatedPayloadProvider).wait()

Delete

An item can be deleted in the DynamoDB table using the following-

try table.deleteItem(forKey: key).wait()

The deleteItem operation will succeed even if the specified row doesn't exist in the database table.

Queries and Batch

All or a subset of the rows from a partition can be retrieved using a query-

enum TestPolymorphicOperationReturnType: PolymorphicOperationReturnType {
    typealias AttributesType = StandardPrimaryKeyAttributes
    
    static var types: [(Codable.Type, PolymorphicOperationReturnOption<StandardPrimaryKeyAttributes, Self>)] = [
        (TypeA.self, .init( {.typeA($0)} )),
        (TypeB.self, .init( {.typeB($0)} )),
        ]
    
    case typeA(StandardTypedDatabaseItem<TypeA>)
    case typeB(StandardTypedDatabaseItem<TypeB>)
}

let (queryItems, nextPageToken): ([TestPolymorphicOperationReturnType], String?) =
    try table.query(forPartitionKey: partitionId,
                    sortKeyCondition: nil,
                    limit: 100,
                    exclusiveStartKey: exclusiveStartKey).wait()
                                 
for item in queryItems {                         
    switch item {
    case .typeA(let databaseItem):
        ...
    case .typeB(let databaseItem):
    }
}
  1. The sort key condition can restrict the query to a subset of the partition rows. A nil condition will return all rows in the partition.
  2. The query operation will fail if the partition contains rows that are not specified in the output PolymorphicOperationReturnType type.
  3. The optional String returned by the query operation can be used as the exclusiveStartKey in another request to retrieve the next "page" of results from DynamoDB.
  4. There is an overload of the query operation that doesn't accept a limit or exclusiveStartKey. This overload will internally handle the API pagination, making multiple calls to DynamoDB if necessary.

A similar operation utilises DynamoDB's BatchGetItem API, returning items in a dictionary keyed by the provided CompositePrimaryKey instance-

let batch: [StandardCompositePrimaryKey: TestPolymorphicOperationReturnType] = try table.getItems(forKeys: [key1, key2]).wait()

guard case .testTypeA(let retrievedDatabaseItem1) = batch[key1] else {
    ...
}

guard case .testTypeB(let retrievedDatabaseItem2) = batch[key2] else {
    ...
}

This operation will automatically handle retrying unprocessed items (with exponential backoff) if the table doesn't have the capacity during the initial request.

Monomorphic Queries

In addition to the query operation, there is a seperate set of operations that provide a simpler API when a query will only retrieve rows of the same type.

let (queryItems, nextPageToken): ([StandardTypedDatabaseItem<TestTypeA>], String?) =
    try table.monomorphicQuery(forPartitionKey: "partitionId",
                               sortKeyCondition: nil,
                               limit: 100,
                               exclusiveStartKey: exclusiveStartKey).wait()
                                 
for databaseItem in queryItems {                         
    ...
}

There is also an equivalent monomorphicGetItems DynamoDB's BatchGetItem API-

let batch: [StandardCompositePrimaryKey: StandardTypedDatabaseItem<TestTypeA>]
    = try table.monomorphicGetItems(forKeys: [key1, key2]).wait()
    
guard let retrievedDatabaseItem1 = batch[key1] else {
    ...
}
        
guard let retrievedDatabaseItem2 = batch[key2] else {
    ...
}

Queries on Indices

There are two mechanisms for querying on indices depending on if you have any projected attributes.

Using Projected Attributes

If you are projecting all attributes or some attributes (for this option to work you must project at least the attributes managed directly by smoke-dynamodb which are CreateDate, LastUpdatedDate, RowType and RowVersion), you can use the DynamoDBCompositePrimaryKeyTable protocol and its conforming types as usual but with a custom PrimaryKeyAttributes type-

public struct GSI1PrimaryKeyAttributes: PrimaryKeyAttributes {
    public static var partitionKeyAttributeName: String {
        return "GSI-1-PK"
    }
    public static var sortKeyAttributeName: String {
        return "GSI-1-SK"
    }
    public static var indexName: String? {
        return "GSI-1"
    }
}

enum TestPolymorphicOperationReturnType: PolymorphicOperationReturnType {
    typealias AttributesType = GSI1PrimaryKeyAttributes
    
    static var types: [(Codable.Type, PolymorphicOperationReturnOption<GSI1PrimaryKeyAttributes, Self>)] = [
        (TypeA.self, .init( {.typeA($0)} )),
        (TypeB.self, .init( {.typeB($0)} )),
        ]
    
    case typeA(StandardTypedDatabaseItem<TypeA>)
    case typeB(StandardTypedDatabaseItem<TypeB>)
}

let (queryItems, nextPageToken): ([TestPolymorphicOperationReturnType], String?) =
    try table.query(forPartitionKey: partitionId,
                    sortKeyCondition: nil,
                    limit: 100,
                    exclusiveStartKey: exclusiveStartKey).wait()
                                 
for item in queryItems {                         
    switch item {
    case .typeA(let databaseItem):
        ...
    case .typeB(let databaseItem):
    }
}

and similarly for monomorphic queries-

let (queryItems, nextPageToken): ([TypedDatabaseItem<GSI1PrimaryKeyAttributes, TestTypeA>], String?) =
    try table.monomorphicQuery(forPartitionKey: "partitionId",
                               sortKeyCondition: nil,
                               limit: 100,
                               exclusiveStartKey: exclusiveStartKey).wait()
                                 
for databaseItem in queryItems {                         
    ...
}

Using No Projected Attributes

To simply query a partition on an index that has no projected attributes, you can use the DynamoDBCompositePrimaryKeysProjection protocol and conforming types like AWSDynamoDBCompositePrimaryKeysProjection. This type is created using a generator class in the same way as the primary table type-

let generator = AWSDynamoDBCompositePrimaryKeysProjectionGenerator(
    credentialsProvider: credentialsProvider, region: region,
    endpointHostName: dynamodbEndpointHostName, tableName: dynamodbTableName)

let projection = generator.with(logger: logger)

The list of keys in a partition can then be retrieved using the functions provided by this protocol-

let (queryItems, nextPageToken): ([CompositePrimaryKey<GSI1PrimaryKeyAttributes>], String?) =
    try projection.query(
        forPartitionKey: "partitionId",
        sortKeyCondition: nil,
        limit: 100,
        exclusiveStartKey: exclusiveStartKey).wait()
                                 
for primaryKey in queryItems {                         
    ...
}

Recording updates in a historical partition

This package contains a number of convenience functions for storing versions of a row in a historical partition

Insertion

The insertItemWithHistoricalRow operation provide a single call to insert both a primary and historical item-

try table.insertItemWithHistoricalRow(primaryItem: databaseItem, historicalItem: historicalItem).wait()

Update

The updateItemWithHistoricalRow operation provide a single call to update a primary item and insert a historical item-

try table.updateItemWithHistoricalRow(primaryItem: updatedItem, 
                                      existingItem: databaseItem, 
                                      historicalItem: historicalItem).wait()

Clobber

The clobberItemWithHistoricalRow operation will attempt to insert or update the primary item, repeatedly calling the primaryItemProvider to retrieve an updated version of the current row (if it exists) until the appropriate insert or update operation succeeds. The historicalItemProvider is called to provide the historical item based on the primary item that was inserted into the database table. The primary item may not exist in the database table to begin with.

try table.clobberItemWithHistoricalRow(primaryItemProvider: primaryItemProvider,
                                       historicalItemProvider: historicalItemProvider).wait()

The clobberItemWithHistoricalRow operation is typically used when it is unknown if the primary item already exists in the database table and you want to either insert it or write a new version of that row (which may or may not be based on the existing item).

This operation can fail with a concurrency error if the insert or update operation repeatedly fails (the default is after 10 attempts).

Conditionally Update

The conditionallyUpdateItemWithHistoricalRow operation will attempt to update the primary item, repeatedly calling the primaryItemProvider to retrieve an updated version of the current row until the update operation succeeds. The primaryItemProvider can thrown an exception to indicate that the current row is unable to be updated. The historicalItemProvider is called to provide the historical item based on the primary item that was inserted into the database table.

try table.conditionallyUpdateItemWithHistoricalRow(
    forPrimaryKey: dKey,
    primaryItemProvider: conditionalUpdatePrimaryItemProvider,
    historicalItemProvider: conditionalUpdateHistoricalItemProvider).wait()

The conditionallyUpdateItemWithHistoricalRow operation is typically used when it is known that the primary item exists and you want to test if you can update it based on some attribute of its current version. A common scenario is adding a subordinate related item to the primary item where there is a limit of the number of related items. Here you would want to test the current version of the primary item to ensure the number of related items isn't exceeded.

This operation can fail with a concurrency error if the update operation repeatedly fails (the default is after 10 attempts).

Note: The clobberItemWithHistoricalRow operation is similar in nature but have slightly different use cases. The clobber operation is typically used to create or update the primary item. The conditionallyUpdate operation is typically used when creating a subordinate related item that requires checking if the primary item can be updated.

Managing versioned rows

The clobberVersionedItemWithHistoricalRow operation provide a mechanism for managing mutable database rows and storing all previous versions of that row in a historical partition. This operation stores the primary item under a "version zero" sort key with a payload that replicates the current version of the row. This historical partition contains rows for each version, including the current version under a sort key for that version.

let payload1 = PayloadType(firstly: "firstly", secondly: "secondly")
let partitionKey = "partitionId"
let historicalPartitionPrefix = "historical"
let historicalPartitionKey = "\(historicalPartitionPrefix).\(partitionKey)"
                
func generateSortKey(withVersion version: Int) -> String {
    let prefix = String(format: "v%05d", version)
    return [prefix, "sortId"].dynamodbKey
}
    
try table.clobberVersionedItemWithHistoricalRow(forPrimaryKey: partitionKey,
                                                andHistoricalKey: historicalPartitionKey,
                                                item: payload1,
                                                primaryKeyType: StandardPrimaryKeyAttributes.self,
                                                generateSortKey: generateSortKey).wait()
                                                             
// the v0 row, copy of version 1
let key1 = StandardCompositePrimaryKey(partitionKey: partitionKey, sortKey: generateSortKey(withVersion: 0))
let item1: StandardTypedDatabaseItem<RowWithItemVersion<PayloadType>> = try table.getItem(forKey: key1).wait()
item1.rowValue.itemVersion // 1
item1.rowStatus.rowVersion // 1
item1.rowValue.rowValue // payload1
        
// the v1 row, has version 1
let key2 = StandardCompositePrimaryKey(partitionKey: historicalPartitionKey, sortKey: generateSortKey(withVersion: 1))
let item2: StandardTypedDatabaseItem<RowWithItemVersion<PayloadType>> = try table.getItem(forKey: key2).wait()
item1.rowValue.itemVersion // 1
item1.rowStatus.rowVersion // 1
item1.rowValue.rowValue // payload1
        
let payload2 = PayloadType(firstly: "thirdly", secondly: "fourthly")
        
try table.clobberVersionedItemWithHistoricalRow(forPrimaryKey: partitionKey,
                                                andHistoricalKey: historicalPartitionKey,
                                                item: payload2,
                                                primaryKeyType: StandardPrimaryKeyAttributes.self,
                                                generateSortKey: generateSortKey).wait()
        
// the v0 row, copy of version 2
let key3 = StandardCompositePrimaryKey(partitionKey: partitionKey, sortKey: generateSortKey(withVersion: 0))
let item3: StandardTypedDatabaseItem<RowWithItemVersion<PayloadType>> = try table.getItem(forKey: key3).wait()
item1.rowValue.itemVersion // 2
item1.rowStatus.rowVersion // 2
item1.rowValue.rowValue // payload2
        
// the v1 row, still has version 1
let key4 = StandardCompositePrimaryKey(partitionKey: historicalPartitionKey, sortKey: generateSortKey(withVersion: 1))
let item4: StandardTypedDatabaseItem<RowWithItemVersion<PayloadType>> = try table.getItem(forKey: key4).wait()
item1.rowValue.itemVersion // 1
item1.rowStatus.rowVersion // 1
item1.rowValue.rowValue // payload1
        
// the v2 row, has version 2
let key5 = StandardCompositePrimaryKey(partitionKey: historicalPartitionKey, sortKey: generateSortKey(withVersion: 2))
let item5: StandardTypedDatabaseItem<RowWithItemVersion<PayloadType>> = try table.getItem(forKey: key5).wait()
item1.rowValue.itemVersion // 2
item1.rowStatus.rowVersion // 1
item1.rowValue.rowValue // payload2

This provides a localized synchronization mechanism for updating mutable rows in a database table where the lock is tracked as the rowVersion of the primary item. This allows versioned mutable rows to updated safely and updates to different primary items do not contend for a table-wide lock.

Entities

The main entities provided by this package are

  • CompositePrimaryKey: a struct that stores the partition and sort values for a composite primary key.
  • TypedDatabaseItem: a struct that manages decoding and encoding rows of a particular type from polymorphic database tables.
  • PolymorphicDatabaseItem: a struct that manages decoding rows that are one out of a number of types from polymorphic database tables.
  • DynamoDBCompositePrimaryKeyTable: a protocol for interacting with a DynamoDB database table.
  • InMemoryDynamoDBCompositePrimaryKeyTable: a struct conforming to the DynamoDBCompositePrimaryKeyTable protocol that interacts with a local in-memory table.
  • AWSDynamoDBCompositePrimaryKeyTable: a struct conforming to the DynamoDBCompositePrimaryKeyTable protocol that interacts with the AWS DynamoDB service.

CompositePrimaryKey

The CompositePrimaryKey struct defines the partition and sort key values for a row in the database. It is also used to serialize and deserialize these values. For convenience, this package provides a typealias called StandardCompositePrimaryKey that uses a partition key with an attribute name of PK and a sort key with an attribute name of SK. This struct can be instantiated as shown-

let key = StandardCompositePrimaryKey(partitionKey: "partitionKeyValue",
                                      sortKey: "sortKeyValue")

TypedDatabaseItem

The TypedDatabaseItem struct manages a number of attributes in the database table to enable decoding and encoding rows to and from the correct type. In addition it also manages other conveniences such as versioning. The attributes this struct will add to a database row are-

  • CreateDate: The timestamp when the row was created.
  • RowType: Specifies the schema used by the other attributes of this row.
  • RowVersion: A version number for the values currently in this row. Used to enable optimistic locking.
  • LastUpdatedDate: The timestamp when the row was last updated.

Similar to CompositePrimaryKey, this package provides a typealias called StandardTypedDatabaseItem that expects the standard partition and sort key attribute names.

This struct can be instantiated as shown-

let newDatabaseItem = StandardTypedDatabaseItem.newItem(withKey: compositePrimaryKey, andValue: rowValueType)

Here compositePrimaryKey must be of type CompositePrimaryKey and rowValueType must conform to the Codable protocol. By default, performing a PutItem operation with this item on a table where this row already exists will fail.

The createUpdatedItem function on this struct can be used to create an updated version of this row-

let updatedDatabaseItem = newDatabaseItem.createUpdatedItem(withValue: updatedValue)

This function will create a new instance of TypedDatabaseItem with the same key and updated LastUpdatedDate and RowVersion values. By default, performing a PutItem operation with this item on a table where this row already exists and the RowVersion isn't equal to the value of the original row will fail.

DynamoDBCompositePrimaryKeyTable

The DynamoDBCompositePrimaryKeyTable protocol provides a number of functions for interacting with the DynamoDB tables. Typically the AWSDynamoDBCompositePrimaryKeyTable implementation of this protocol is instantiated using a CredentialProvider (such as one from the smoke-aws-credentials module to automatically handle rotating credentials), the service region and endpoint and the table name to use.

let generator = AWSDynamoDBCompositePrimaryKeyTableGenerator(
    credentialsProvider: credentialsProvider, region: region,
    endpointHostName: dynamodbEndpointHostName, tableName: dynamodbTableName)
   
let table = generator.with(logger: logger)

Internally AWSDynamoDBCompositePrimaryKeyTable uses a custom Decoder and Encoder to serialize types that conform to Codable to and from the JSON schema required by the DynamoDB service. These Decoder and Encoder implementation automatically capitalize attribute names.

Customization

PrimaryKeyAttributes

CompositePrimaryKey, TypedDatabaseItem and PolymorphicDatabaseItem are all generic to a type conforming to the PrimaryKeyAttributes protocol. This protocol can be used to use custom attribute names for the partition and sort keys.

public struct MyPrimaryKeyAttributes: PrimaryKeyAttributes {
    public static var partitionKeyAttributeName: String {
        return "MyPartitionAttributeName"
    }
    public static var sortKeyAttributeName: String {
        return "MySortKeyAttributeName"
    }
}

CustomRowTypeIdentifier

If the Codable type is used for a row type also conforms to the CustomRowTypeIdentifier, the rowTypeIdentifier property of this type will be used as the RowType recorded in the database row.

struct TypeB: Codable, CustomRowTypeIdentifier {
    static var rowTypeIdentifier: String? = "TypeBCustom"
    
    let thirdly: String
    let fourthly: String
}

RowWithIndex

RowWithIndex is a helper struct that provides an index (such as a GSI) attribute as part of the type of a database row.

RowWithItemVersion

RowWithItemVersion is a helper struct that provides an "ItemVersion" to be used in conjunction with the historical item extensions.

License

This library is licensed under the Apache 2.0 License.

GitHub

link
Stars: 30
Last commit: 5 days ago

Ad: Job Offers

iOS Software Engineer @ Perry Street Software
Perry Street Software is Jack’d and SCRUFF. We are two of the world’s largest gay, bi, trans and queer social dating apps on iOS and Android. Our brands reach more than 20 million members worldwide so members can connect, meet and express themselves on a platform that prioritizes privacy and security. We invest heavily into SwiftUI and using Swift Packages to modularize the codebase.

Submit a free job ad (while I'm testing this). The analytics numbers for this website are here.

Release Notes

Add missing right parentheses to list append statement
5 days ago

This release of SmokeDynamoDB provides compatibility with Swift 5.2, Swift 5.3 and Swift 5.4 using SwiftNIO 2.x.

  1. Add missing right parentheses to list append statement. (#51 )

Swiftpack is being maintained by Petr Pavlik | @ptrpavlik | @swiftpackco | API | Analytics